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A series of calculations has been carried out using the McWeeny and Roothaan Open Shell 
methods for determining LCAO-SCF solutions. The work reported here suggests that in order to 
obtain convergence to the absolute minimum with the McWeeny method it is often necessary to provide 
a very good initial approximation and that the rate of convergence could be improved by replacing 
the Steepest Descent by a more powerful minimization technique. Further the Roothaan method does 
not converge in all cases considered and it appears that Extrapolation techniques accelerate convergence 
but do not induce convergence in cases displaying oscillatory behaviour. 

LCAO-SCF-Rechnungen an offenen Schalen wurden nach den Methoden von Roothaan und 
McWeeny durchgeffihrt. Um bei dem McWeenyschen Verfahren Konvergenz zum absoluten Mini- 
mum zu erhalten, ist oft eine schon sehr gute Anfangsngherung n6tig. Die Methode des steilsten Ab- 
stiegs ist keineswegs optimal. Extrapolationsmethoden k6nnen wohl eine Konvergenz beschleunigen, 
nicht aber das beim Roothaan-Verfahren manchmal auftretende Oszillieren unterdrficken. 

On a execute des calculs LCAO SCF en couches ouvertes avec les methodes de Roothaan et 
de McWeeny. Dans la methode de McWeeny il est souvent necessaire d'avoir une bonne approximation 
initiale, pour obtenir une convergence vers le minimum absolu. La methode de descente le plus escarp6 
n'est pas optimale. Les m~thodes d'extrapolation peuvent accelerer la convergence en effet, mais ils 
ne suppriment pas l'oscillation, qui arrive quelquefois dans la m~thode de Roothaan. 

I. Introduction 

T h e  a i m s  o f  b o t h  the  R o o t h a a n  [1]  a n d  M c W e e n y  [2]  O p e n  Shel l  m e t h o d s  a re :  

a) to  d e t e r m i n e  the  absolute m i n i m u m  of  t he  t o t a l  e n e r g y  of  the  sys t em a n d  

b) to  m a i n t a i n  o r t h o n o m a l i t y  of  the  m o l e c u l a r  orb i ta l s .  

R o o t h a a n  h a d  a fu r the r  a i m  t h a t  was :  

c) to  f o r m u l a t e  a H a m i l t o n i a n  such  t h a t  both o p e n  a n d  c losed  vec to r s  were  

e i g e n v e c t o r s  o f  it. 
T h e  r e a d e r  is r e fe r red  to  the  o r i g i n a l  p a p e r s  for  de ta i l s  o f  b o t h  m e t h o d s ,  

h o w e v e r  to  fac i l i ta te  d i s c u s s i o n  s o m e  p o i n t s  a b o u t  the  D e n s i t y  M a t r i x  m e t h o d  

a re  g iven  here.  
In  his  O p e n  Shel l  t h e o r y  M c W e e n y  1 has  d i s t i ngu i shed  b e t w e e n  the  d i f ferent  

v a r i a t i o n a l  p r o c e d u r e s  w h i c h  a re  poss ib le  w h e n  one  has  t w o  o r  m o r e  phys ica l ly  

d i s t inc t  shells,  a n d  has  c o n s i d e r e d  the  f o l l o w i n g  poss ib i l i t i es :  

a) T h e  s y m m e t r i c a l  case  w h e r e  all  the  shel ls  a r e  v a r i e d  s i m u l t a n e o u s l y ,  a n d  

w h e r e  it  is neces sa ry  to  use  a m e a n  2 so as to  r e d u c e  the  c o m p l e x i t y  o f  the  f o r m u l a -  
t i on  (this is fu r the r  d i scussed  in Sec t i on  II.1). 

* Formerly: The Chemistry Department, King's College, London W.C. 2. 
1 As it stands the theory only applies to special cases of open shell systems. Sleeman [3] has 

suggested a modification which allows the general case to be considered. 
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b) The asymmetrical case where a shell (or degenerate shells) is varied and 
the others remain fixed. McWeeny has shown that in order to maintain idem- 
potency of the modified D.M. fiR i must equal 

2i(i+ ~2 ~2,-~ [L~ + ;~L~M~] (1) --  /t i Li) 
or if one assumes that ,~ L~ --, 0 then 

~R~ = - 2 i  ILl + 2i L~Mi] (2) 

where R~ and 2~ are the Density Matrix and step-length respectively for shell, i, 
L i and Mi are matrices which depend upon various factors including the density 
matrix, the Hamiltonian and the occupation number for the shell (see [2] and 
[3] for details). 

The formulae derived above also apply to degenerate sub-shells provided the 
summation is over all the sub-shells. Further, although McWeeny originally 
derived his open-shell theory for an orthogonal basis, the same formulation can 
be used with a non-orthogonal basis provided the integrals are transferred to the 
orthogonal basis. L6wdin [4] has shown that the transformations are: 

h(orthog ) S h(non.ortlaog )S  , (3) 

R(orthog ) = S + ½R(non_orthog ) S + ½ , 

where S is the overlap matrix between the non-orthogonal basis-functions. 
The computer programs for the iterative procedures were designed to be as 

general as possible and therefore we programmed the generalized form of 
McWeeny's asymmetrical method 2 and incorporated the transformation dis- 
cussed above. For  similar reasons these same transformations were incorporated 
into the program for the Roothaan's Open Shell method, 

Slater Type Orbitals were chosen as basis functions for both the methods and 
it was found necessary to use an approximation to calculate some of the two- 
electron integrals. In the original programs the Mulliken [5] approximation 
was used. 

II.  D i s c u s s i o n  o f  R e s u l t s  

The systems which were investigated initially were the O H  +, OH" and O H -  
configurations. The results which were obtained by both the McWeeny and 
Roothaan methods are summarized in Figs. 1, 2 and 3 respectively 3. For  these 
configurations the McWeeny method has always converged to a minimum, 
however slowly, and the Roothaan method converged very rapidly for certain 
cases. Prior to a detailed analysis of the convergence, the following points are 
suggested as possible reason for the convergence problems: 

a) Relevant to both Methods 
1. Rounding errors introduced in the iterative procedure. 
2. The choice of initial Density Matrices, 

b) Relevant to the Density Matrix Method 
The higher-order terms which have been neglected are not negligible. 

2 Initially with the approximated form for 6R~ (Eq. 2). 
3 In general, results of calculations will be given in Table 3 as final total energies and the number 

of cycles required for convergence. Further information can be obtained from the author on request. 
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II. 1 Comment on the Analysis 

With both methods, but more particularly with the Roothaan method, 
difficulties were experienced due to rounding-off errors. The peculiar difficulty 
noted with the Diagonalization method was due to the inaccuracies introduced 
by the actual Diagonalization procedure and this was overcome by increasing 
the precision of this procedure. The common  difficulties were due to the in- 
accuracies of the basic atomic integrals and to small rounding errors introduced 
at each cycle by the iterative procedures themselves. This first difficulty was 
overcome by increasing the number  of  terms in the various analytical expressions 
for the integrals and the second was solved by setting small elements to zero 
at each iteration. 
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Fig. 2. Comparison of the behaviour observed with the McWeeny and Roothaan methods for the 
OH' configuration 

The choice of the initial density matrices is very important  in the case of 
an open-shell as there may well be more than one configuration to which the 
procedure could converge. However,  it is extremely difficult to choose initial 
density matrices for an open-shell system and it may well be necessary to carry 
out a calculation on the associated closed-shell system: open-shell calculations 
would then be carried out for each of a series of appropriate  trial density matrices, 
and it would seem likely that the lowest total energy for the series would correspond 
to the ground state of the open-shell configuration. 
10 Theoret. chim. Acta (Berl.) Vol. 11 
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The peculiar phenomenon displayed by the Diagonalization method is 
oscillation. Oscillation in supposedly converging functions (as in Fig. 2) is well 
known in various branches of Mathematics and an extrapolation method has 
been suggested by Aitken [-6]. 
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Fig. 3. Comparison of the rates of convergence with the McWeeny and Roothaan methods for the 
OH- configuration 

Roothaan and Bagus [7] have adapted it for use in this context, the relationship 
which they give is: 

( t i  + 2,p - -  t 2 i+1,,) (4) 
tp = t i + 2 ,  p 4- ( 2 t i + l , p  __ t i ,p  __ t i+2"P ) 

where t is a vector representing all m occupied orbitals, p is a particular element 
of this "supervector" and i is the SCF cycle number. Before extrapolation it is 
necessary to standardize the sign of the largest element of each of the vectors, and 
after extrapolation an ortho-normalization of the vectors is necessary. 

Nesbet I-8] pointed out that some of the difficulties experienced above could 
be overcome by applying extrapolation to the D.M. directly; using a similar 
notation to that given above, we have: 

(Ri+ 2 - -  R i + I )  2 
R = R i+ 2 4- ( 5 )  

(2Ri+l - R i -  Ri + 2) 

After the extrapolation procedure the vectors must once more be orthog- 
normalized; however, this is simpler here as it is only necessary to make the D.M. 
idempotent. 

Eqs. (4) and (5) have been re-arranged, following Csizmadia 1-9] so that limits 
may be applied to the extrapolation. Obviously a zero denominator must be 
avoided as must any change which would be large compared with the elements 
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being extrapolated. Unfortunately, the limits of extrapolation have to be deter- 
mined empirically - which is rather unsatisfactory. 

For either method the extrapolation procedure is carried out every 3 cycles 
and the result is used as input for the next iteration. For the OH' radical oscillation 
is not overcome by either extrapolation procedure; in fact, the behaviour recorded 
is very similar to that of Fig. 2. However, the rate of convergence of OH = has 
been considerably improved by extrapolation (see Table 3). 

In order to see whether these observations were generally applicable the HCN 
(bend and straight) and HCOO" 4 configurations were considered. In view of the 
lack of convergence with the Roothaan method for the closed-shell HCN con- 
figurations and further convergence with the open-shell H C O O  it would seem 
that the Diagonalization method converges very rapidly for some closed - and 
open-shell configurations; however, the conditions are yet to be understood. 

Again the extrapolation procedures did not induce convergence in the case 
of the HCN configurations and thus it seems we can deduce that extrapolation 
accelerates convergence but does not help in case of divergence. 

With the McWeeny method the problem which has to be investigated is the 
slow rate of convergence. As has already been mentioned the initial computer 
program written incorporated the generalized asymmetrical approach (with the 
approximation for 2). With this program it was noticed that frequently the changes 
made to the Density Matrices for the OH calculations were such that idempotency 
was not maintained rigorously (and thus idempotency had to be restored at each 
cycle). Further, when a larger configuration, HCOO' was considered for large 
steplengths the modified Density Matrix was found to be outside "the radius of 
convergence" of the idempotency routine (i.e. the values of the matrix elements 
diverged). McWeeny [10] has indicated that reducing the step-lengths merely 
reduced the rate of  convergence and so it was decided to limit the maximum value 
of 2 permissible. Table 1 summarises the results obtained from one trial D.M. for 

HCOO': Table 1 

Maxi mum size Behaviour of iterative procedure 
of 2 permitted 

0.1, 0.25 

0.50 

0.70 

0.75 

3.9485 (unlimited) 

Begins to descend, however 2 for 2nd 
cycle becomes negative 

The energy oscillates between two val- 
ues: eventually the R formed is outside 
the radius of convergence of the idem- 
potency routine 

Descends monotonical ly 

Begins to descend: R for 2nd cycle is 
outside the radius of convergence of 
the idempotency routine 

The modified R is outside the radius of 
convergence of the idempotency rou- 
tine 

4 In the basis set used, the 1s-orbital was made orthogonal  to the 2s-orbital. (The 1s-orbital is 
commonly  said to be factorized out.) 

10" 
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The above results are capable of a number of interpretations: however it is 
clear that it is necessary to choose 2 empirically so that the D.M. in just within 
the limits of the idempotency routine and that the choice of step-length might well 
be crucial in determining the actual configuration to which the method eventually 
converged. As this procedure seemed to be a very unsatisfactory one it was decided 
to include the full expression for 2 as given in Eq. (1). (The approximation assumes 

~2 2 that ,~ L i ~ 0 ,  and although this may well be a very good approximation when 
self consistency is being approached it is not usually true at the beginning of an 
iterative procedure.) 

When the full expression was included in the program it was found that the 
initial descents, for the OH, HCN, and H C O O  systems, were steeper but that 
as the iterative procedure continued the descents were identical; however, idem- 
potency was now maintained rigorously to second order, 

Further, the observations noted in this section indicate very strongly that the 
symmetrical treatment suggested by McWeeny (see [2]), where a mean step- 
length is used, may lead to the wrong energy surface and that the procedure 
suggested here may be the only workable one. 

tl.2. Investigation of the Convergence Problem with the HCOO" System 

An inspection of the results for the HCOO'  system (see Table 3) will show that 
the two methods have converged to different total energies corresponding to 
totally different occupations of the molecular orbitals. In case the difficulty 
encountered was peculiar to the Open-shell problem it was decided to carry out 
the comparable calculation for the (factorized-out) H CO O  = configuration. As the 
same difficulties were encountered a thorough investigation of the problem 
was made: 

a) Cross-Check on Programming 
One great problem with programs of this complexity is to be absolutely sure 

they are "bug-free" and so further extensive cross-checks were made at this point 
between the programs described above and their closed-shell counterparts. These 
checks reaffimed our belief in the open-shell programs. 

b) Compatibility of Final States 
The initial density matrix used in both the H C O O -  calculations contained 

less than the maximum possible number of r~-electrons. The final density matrix 
from the Roothaan method incorporated the correct number, whereas the D.M, 
from the McWeeny calculation contained the initial number. This is because a 
re-arrangement of vectors is always possible with the Roothaan method, but no 
such re-arrangement is possible for the McWeeny method with non-interacting 
shells. The trial D.M. for the McWeeny method was modified so as to contain 
6 ~z-electrons and the results obtained for H C O O -  are summarized in Fig. 4. 
Similarly, the initial Density Matrices for HCOO" were chosen to be the same and 
the McWeeny method gave the original ~-orbital as the open one, and the Roothaan 
method gave a a-orbital. 

c) Local Minima and Choice of lnitial D.M. 
In order to establish whether the McWeeny method was sensitive to the 

initial approximation, various Density matrices obtained from the Roothaan 
method were used as starting points for the McWeeny method. When the Density 
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Matrix from the first iteration of the Roothaan method, indicated in Fig. 4 by C, 
was used as an initial approximation the McWeeny method still converged to 
the result indicated by A. However, when the second Roothaan D.M., D, was used 
the McWeeny method converged to the same result as that obtained by the 
Roothaan method (i.e. B). N.B. C is "above" A and D "below" it. 
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Fig. 4. Comparison of the convergence obtained with the McWeeny and Roothaan methods for the 
factorized-out HCOO- configurations 

Secondly, when the D.M. corresponding to the minimum total energy obtained 
by the McWeeny method, A, was used as the initial D.M. for the Roothaan method, 
this continued to descend until it reached its former value, B, as indicated in Fig. 4. 
These results are summarized in Table 2. 

Table 2 

Initial state Final state Final state 
obtained by the obtained by the 
Roothaan method McWeeny method 

E B A 
C B A 
D B B 
A B A 

All letters refer to points on Fig. 4. 

Interpretation of the Results 
From the first piece of evidence we might suggest that the McWeeny method 

is sensitive to the initial Density Matrix chosen and that in the cases where the 
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initial D.M. is a long way from the solution the iterative procedure may well 
converge to a local minimum. However, the second piece of evidence suggests 
that the solution obtained is not a local minimum at all but that the rate of conver- 
gence of the McWeeny method in the region of A is such as to appear to all the 
usual criteria, that the method has converged. 

Nevertheless, the above results suggest that to obtain convergence to the 
absolute minimum with the McWeeny method it is necessary to choose a very 
good initial approximation, 

A Further Analysis of the Convergence Difficulties of the McWeeny Method 

At a number of points in his derivation of 2 McWeeny has truncated the series 
and has only included terms up to second order. As we have already noted the 
resultant solution is, in fact, very dependent upon the ,~ chosen and therefore 
these approximations may well be of considerable importance. 

Table 3. The table summarises all the configurations and methods which have been considered. Total energies 
which are consistent to less than 1 in the n th place are quoted to n - 1 decimal places. ( N.B.  Due to the various 
problems of  convergence this does not necessarily mean that they are self consistent to the same accuracy) 

Configuration Number of cycles Total 
McWeeny Roothaan electronic 

un-extrapolated Extrapolation I Extrapolation II Energy a . u .  

O H  + a 6 8  

O H "  a 6 5  

O H  8 0  

H C N  (straight) 6 0  

H C N  (bent) 6 0  

H C O O  ( f a c t o r i z e d  o u t )  ~ t 3 2  

H C O O  = (factorized out) { 2 3  

B N  b 7 0  

1 0  - -  - -  - 7 8 . 0 1 9 0 0  

no convergence no convergence no convergence - 7 8 . 1 3 0 8 1  

1 4  8 - -  - 7 7 . 6 0 3 4 9  

no convergence - -  - -  - 1 1 6 . 3 7  

no convergence no convergence - -  - 1 1 4 . 4  

- 1 2 8 . 3 0 0 8  

7 - -  - -  - 1 2 9 . 8 1 2 7 3  

- 1 3 1 . 8 3 0  

1 3  - -  - -  - 1 3 2 . 2 5 9 3 8  

no convergence - -  - -  - 9 3 . 0 4 6 7 1  

a Open-shell configurations. 
b Using the R/idenberg approximation. 

However, quite apart from these approximations the McWeeny formulation 
as it stands is dependent upon the Steepest Descent being a workable method for 
determining the minima of multi-variable general functions from, as often as not, 
poor initial approximations. There is substantial evidence, see for instance 
Fletcher and Powell [11],  that this is not the case. There are a number of alternative 
methods available for function minimization including the Conjugate-Gradient 
method [12] and one due to Davidon 5. In conjunction with Fletcher the problem 
of determining SCF LCAO solution for closed-shells was formulated such that 
the Conjugate-Gradients method could be used. The convergence 6 obtained 
with the H 2 and LiH molecules was considerably better than that obtained with 

5 Discussion of and reference to this method are given in R e f .  [ l  1 1 .  

6 A detailed report of this work is in course of preparation. 
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the Steepest Descent method and only marginally worse than the very steep 
descent obtained with the Roothaan method. 

A further problem, the eigenvalue problem, which the Steepest Descent method 
is known not to be able to deal with satisfactorily has recently been solved using 
the Conjugate-Gradient method [13]. This is further evidence that the difficulties 
in minimization are caused by inefficiency of the method of Steepest Descent 
rather than by any ill-behaviour of the function to be minimized, and suggests that 
this may well be a significant contributory factor to the problem reported here of 
slow convergence with the OH and HCN systems and to the more serious problems 
encountered with the larger HCOO 7 system. 

Conclusion and Su99estions for Further Investigations 

1. Care should be taken to avoid rounding errors from being introduced into 
iterative procedures. 

2. For both the iterative methods, but more particularly for the McWeeny 
method, it is very important that a good initial density matrix should be chosen. 

3. For the McWeeny method it would be very interesting to see how the con- 
vergence would be improved by removing the remaining approximations, 

4. Following the encouraging initial investigations reported above it would 
be of great interest to consider larger configurations using a more powerful 
minimization technique (e.g. Conjugate-Gradients) and to eventually extend this 
approach to consider open-shells. However, the difficulty of applying a mini- 
mization technique to these problems is in the application of the auxiliary con- 
ditions. 

5. It would be very informative were it possible to formulate the precise 
conditions under which the Roothaan Diagonalization method would converge. 
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